Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Sci Rep ; 12(1): 8814, 2022 05 25.
Article in English | MEDLINE | ID: covidwho-1864765

ABSTRACT

The importance of monitoring environmental samples has gained a lot of prominence since the onset of COVID-19 pandemic, and several surveillance efforts are underway using gold standard, albeit expensive qPCR-based techniques. Electrochemical DNA biosensors could offer a potential cost-effective solution suitable for monitoring of environmental water samples in lower middle income countries. In this work, we demonstrate electrochemical detection of amplicons as long as [Formula: see text] obtained from Phi6 bacteriophage (a popular surrogate for SARS-CoV-2) isolated from spiked lake water samples, using ENIG finish PCB electrodes with no surface modification. The electrochemical sensor response is thoroughly characterised for two DNA fragments of different lengths ([Formula: see text] and [Formula: see text]), and the impact of salt in PCR master mix on methylene blue (MB)-DNA interactions is studied. Our findings establish that length of the DNA fragment significantly determines electrochemical sensitivity, and the ability to detect long amplicons without gel purification of PCR products demonstrated in this work bodes well for realisation of fully-automated solutions for in situ measurement of viral load in water samples.


Subject(s)
Biosensing Techniques , COVID-19 , Nucleic Acids , DNA/genetics , Electrochemical Techniques , Electrodes , Humans , Pandemics , SARS-CoV-2/genetics , Water
2.
Sensors and Actuators B: Chemical ; : 130169, 2021.
Article in English | ScienceDirect | ID: covidwho-1243228

ABSTRACT

We present a low-cost electrochemical DNA biosensor based on printed circuit board (PCB) electrodes for wastewater monitoring using portable PCR instruments, such as miniPCR®, without the requirement for qPCR reagents. PCB electrodes are attractive candidates for low-cost and sensitive DNA biosensors of relevance in a pandemic such as COVID-19, and facilitate the opportunity to map disease spread in Low-Middle Income Countries (LMICs) through monitoring of environmental samples such as wastewater. The biosensor reported in this work is capable of detecting PCR amplicons through the intercalation of methylene blue (MB) with DNA, which increases the voltammogram peak current at the redox potential of MB. We describe how these changes are likely to result from the adsorption of MB-DNA complex on the electrode surface. The electrodes are reusable, easy to clean, do not undergo any surface modification and represent a cost-effective solution with long shelf-life. We also explore the impact that MB concentration and DNA length have upon our biosensor performance and provide insights useful to other investigators in the field. The sensor reported here is capable of detecting SARS-CoV-2 nucleocapsid gene amplicons at concentrations as low as 10pg/μ l (approximately 1.7fM) and can detect nucleotides amplified after 10 PCR cycles. Furthermore, using the PCB electrode and approaches described here, SARS-CoV-2 amplicons were detected in simulated wastewater sample, by spiking wastewater collected from a sewage treatment plant in Mumbai, India with SARS-CoV-2 RNA.

SELECTION OF CITATIONS
SEARCH DETAIL